

主な性能

	主な性能
空間分解能 (X / Y / Z)	500 nm / 350 nm / 1000 nm (@レーザー波長 532 nm, 100x 0.90 NA)
スペクトル測定範囲	100 cm ⁻¹ ~ (オプション:50 cm ⁻¹ ~)
スペクトル分解能 (FWHM)	0.9 cm ⁻¹ (@785 nm, 1200 g/mm)
スペクトルピクセル分解能	0.4 cm [.] 1/pixel (@785 nm, 1200 g/mm)
ピーク位置決め精度	0.1 cm ⁻¹ (@532 nm, 2400 g/mm)

主な仕様

	主な仕様		
レーザー波長	266 nm、325 nm、355 nm(ポイント照明のみ)		
	405 nm、457 nm、488 nm、532 nm、633 nm、671 nm、785 nm ほか		
レーザー照射方式	ポイント照明 / ライン照明、レーザー強度は 200 段階以上に可変		
分光器の焦点距離	550 mm		
回折格子	150、300、600、1200、1800、2400、3600 g/mm から最大3枚を選択		
検出器	超高感度電子冷却 CCD 1340 × 400 画素(ピーク量子効率 98%)		

オプション	- データベース
	- 高精度ピークシフト測定機能
	- 冷却加熱ステージ
	- 低波数ラマンスペクトル測定機能
	- 暗視野観察機能
	- クリーンルーム対応

本体寸法と質量

サイズ (W × H × D)	1276 × 1350 × 1320 mm (除振台含む)
質 量	420 kg(除振台含む)

本製品はクラス1レーザー製品です (JIS C6802:2014)

ナノフォトン株式会社

東京ショールーム 〒105-0003 東京都港区西新橋 3-6-10 マストライフ西新橋 403 TEL:03-6432-4881

大阪 R&D センター

〒565-0871 大阪府吹田市山田丘 2-1 大阪大学フォトニクスセンター P3-321 TEL:06-6878-9911 E-mail : info@nanophoton.jp

2020.11

www.nanophoton.jp

ゥェハーステージ搭載ラマン顕微鏡 RAMANdrive

高品質ウエハー開発の駆動力

大口径ウエハーをさらなる高品質へ導く、 300 mmウエハーステージ搭載ラマン顕微鏡。

RAMANdrive は、300 mm ウエハーステージを搭載した 半導体分析専用のラマン顕微鏡です。 ステージをウエハーの所望の位置へ正確かつスムーズに移動 させ、高性能なラマン分光分析を実現します。

1 ウェハー全面イメージング

最大300 mm までのウエハー全面を超高速にラマンイメージング可能です。 当社独自のユニークなレーザービーム走査とステージ移動を組み合わせ、 短時間で正確に、ウエハー面内のわずかな構造変化を捉えます。

2. ステージナビゲーションシステム

当社独自開発のステージナビゲーションシステムは、ユーザー所有の異物・ 欠陥検査装置で取得した座標データを読み込み、サンプル上に存在する 異物や欠陥の座標へ、ステージを正確かつスムーズに電動で移動させます。 サンプルの捜索に時間を割くことなく、分析業務に集中できます。

3. 応力分布を可視化する3D ラマンイメージング

RAMANdrive は優れた共焦点 (コンフォーカル)光学系を搭載しており、 高分解能な3Dラマンイメージング分析が可能です。半導体ウエハー中の 応力や結晶多形の分布を、サブミクロンの空間分解能で、明瞭に3Dで 可視化することができます。

前人未到、ウエハー全面のラマンイメージング。 - 300 mm ウエハー全体を隅々まで超高速に -

最大 300 mm の大口径ウエハーを設置できる専用ステージを搭載。 真空吸着機構により、ウエハーを水平に保ちながら、ステージ上にしっかり固定します。 ステージの可動範囲が広いため、ウエハーの端から端まであらゆる場所を視野中心に 捉え、各口径でウエハーの隅々まで測定できます。装置の特長であるレーザービーム 走査とステージ動作を組み合わせることで、超高速でラマンイメージングができます。 また、ウエハー中央の溝や両端には、ウエハー以外の背の高いサンプルも設置、測定 することができます。

Si ウエハー

GaN / Si ウエハー

0

真空吸着機構

ウエハー位置決めピン

ラマンイメージングの常識を変える、AreaFlash 測定

AreaFlash 機能は、試料にライン状にしたレーザーを照射し1測定における露光中に、ビー ムスキャンによって高速にレーザーを走査し続けて、平均スペクトルを取得する機能です。 短時間でウエハー全体の情報を得たい場合、1 点あたりの露光時間を短くする必要があり ます。測定点を、点ではなく面領域の平均データ、すなわち AreaFlash 測定に置き換え ることで、1点当たりの測定時間を1/60以下に短縮できます。

背の高いサンプルの測定の様子

独自開発のステージナビゲーションシステムを搭載。 座標マップを読み込んで、測定ターゲットを確実に視野に捉えます。

測定対象を素早く確実に捉えるステージナビゲーションシステム

ステージナビゲーションシステムは、分析時間を短縮し、分析 効率を高めるソフトウェアで、RAMANdriveの最も重要な 特長のひとつです。ユーザー所有のインライン異物・欠陥検査 装置で取得したウエハーマップデータを読み込み、分析したい 異物や欠陥のある場所へ正確かつスムーズにステージを移動さ せます。

また、座標ファイルを読み込み、多点測定も可能です。読み込 むマップデータの種類やナビゲーションウィンドウの仕様な ど、ご要望に合わせたカスタマイズも可能です。

座標ナビゲーション後の測定事例

最高クラスの空間分解能は、スポットサイズよりも小さな粒子 の検出感度を飛躍的に高めます。オプションの高品質な暗視野 観察機能により 100 nm 以下の微小異物の位置を明瞭に確認 し、高精度なレーザービーム走査で正確に異物の中心にレー ザービームを照射します。S/Nの高いラマンスペクトルが取得 できるため、高精度な異物同定が可能です。

— : 異物のスペクトル — : PS のスペクトル(ライブラリ)

独自開発のライン照明と、最高の空間分解能が実現する、 超高感度かつ超高速なラマンイメージング分析。

ラマンイメージの取得速度を飛躍的に上げるため、レーザー ビームをライン状に引き伸ばして試料に照射する独自のライン 照明技術を開発。試料上のライン状に照射された領域から、 同時に400本のラマンスペクトルを検出します。また、高精度 のスキャニングミラーを搭載することで、レーザービーム走査 によるイメージングを実現。分析領域を指定したら、ステージ を全く動かすことなく、わずか数分のうちに10万画素を超える 高精細なラマンイメージを取得できます。

また、高品質な共焦点光学系が搭載されたRAMANdriveは、 XYZ すべての方向で最高の空間分解能を誇ります。この高い分 解能は、100 nm 以下の微小粒子の検出感度を飛躍的に高める ことにも寄与します。優れたスペクトル分解能とピーク位置 決め精度は、応力やポリタイプの高精度な分析を可能とします。

400 スペクトル同時検出システム


```
半導体アプリケーション
```

半導体材料のラマンスペクトルには、応力や ポリタイプ、キャリア濃度などの豊富な情報 が含まれています。サブミクロンの空間分解 能と超高速イメージング技術を組み合わせた 3 D ラマンイメージングは、新しい半導体材 料の開発を加速し、ウエハーの歩留りや品質 の改善をサポートします。

応力分析 - 半導体の性能を左右する 応力の大きさや空間分布を 2D, 3D で可視化-

高性能の共焦点光学系が実現する、 局所応力の断面・3Dイメージング

高性能の共焦点光学系を備えた RAMANdrive なら、SiC、GaN、AIN や ダイヤモンドのような透明なサンプルの深さ方向のイメージングが可能です。 SiC ウエハー内の応力分布を断層ラマンイメージングしたデータでは、研削傷に よる応力が、研磨により軽減していることが分かります。一方、下の図は同じ SiC ウエハー研削後の 3D 応力イメージング結果です。 3D イメージングにより、 非破壊で、応力の大きさや空間分布の可視化ができます。

ラマンスペクトルから何が分かる?

理論値限界に迫る高い空間分解能 GaN/Si 界面の3D 応力分布

右図は、Si 直上に複数の GaN 系薄層を形成したウエ ハーの、GaN 系薄層とSi 基板界面の3D 応力分布です。 数十 nm の極薄層も含むため、XYZ ともに 100 nm ステップでマッピングしました。高い共焦点性により、 Si 基板上の GaN 系薄層に存在する結晶欠陥由来の 応力分布をサブミクロンスケールで捉えています。

300 mm Si ウエハー全面の 応力分布

RAMANdrive なら、高い空間分解能と波数分解能で ウエハーの隅々まで分析できます。右図は、3種類の 紙やすりで研削した Si ウエハーの応力分布です。研削 した部分では、研削傷に沿った局所的な圧縮応力が見 られます。

市販トランジスタパッケージ断面の応力分析

パッケージ内部の半導体チップにも、パッケージ 構造やメタル配線などによる応力の影響がありま す。市販のトランジスタパッケージ断面を鏡面研 磨し、ワイヤ接合部のSi応力分布を評価しました。 接合中央部に、局所的な引張応力があることが わかりました。

研磨断面写真 パッケージ断面の Si 応力分布

GaN/Si界面の3D応力分布

-0.5 cm⁻ (125 MPa tensile)

520 cm⁻¹ ピークシフト

520 cm⁻¹ ピークシフト

(50 MPa compressive)

0.2 cm⁻¹

 0 cm^{-1}

300 mm ウエハー全面の応力分布

520cm⁻¹ ピークシフト

0.2 cm⁻¹ (50 MPa compressive)

 0 cm^{-1}

-0.2 cm⁻¹ (50 MPa tensile)

Si 基板

半導体の品質を高めるラマンイメージング分析

- 結晶形・結晶性・キャリア濃度など、あらゆる視点で分析 -

4 インチ SiC ウエハー全面の結晶多形と応力評価

ウエハー全面の結晶多形の分布画像です。このウエハーの ポリタイプは 4H ですが、ウエハーの 左上から弧を描くよ うに、15R, 6H の 2 種類の異なるポリタイプが分布してい ることがわかります。ポリタイプの違いはラマンスペクトル から同定しました。特定の座標位置に移動して、さらに 3D イメージングなどの詳細分析を行うことも可能です。 また右図は、同じウエハーにて、16 μm 角の AreaFlash 測定データをつなぎ合わせてマッピングした応力イメージ です。776 cm⁻¹ ラマンピークシフト位置でプロットしまし た。左側外周付近の異なるポリタイプが成長している領域の 基板は圧縮応力、中央部は引張応力が分布していることが わかります。

ポリタイプイメージ 応力イメージ ų, ■4H ■15R ■6H 各ポリタイプの代表的なラマンスペクトル 3Dイメージ 0.6 cm (compressive) 0 cm⁻¹

Raman shift (cm⁻¹)

ポリシリコンの結晶性イメージング

ラマンピークの半値幅 (FWHM) から結晶性の良し悪しが わかります。ポリシリコン基板の平面イメージングにより、 結晶性の分布がわかります。また断層イメージングにより、 非破壊で、結晶性の深さ方向の分布がわかります。

FWHM イメージング(平面)

光学顕微鏡像

FWHM イメージング(断層)

結晶性·悪 FWHM: 12 cm⁻¹

-0.2 cm⁻ (tensile)

結晶性·良 FWHM: 3 cm⁻¹

3 インチ SiC ウエハーのキャリア濃度分布

極端にキャリア濃度を変えた 3 種類の3インチ SiC ウエハー のラマンイメージです。960 cm⁻¹ 付近の LOPC ピークの位置 でイメージングを行いました。SiC ウエハーは目視でシミのよ うなものが見えますが、これは、キャリア濃度が周辺の基板 より高濃度であるためです。

UV 励起によるフォトルミネッセンスイメージングとラマンイメージング

フォトルミネッセンス(PL)イメージングは、GaNの発光特性や ワイドギャップ半導体の欠陥、不純物の分布評価に広く用いら れています。オプションの波長325 nmのUVレーザーを使えば、 In組成やサイズが異なるInGaNドットや、GaNなどワイドギャッ プ半導体材料のPLスペクトルを検出できます。また、UVレーザー は侵入長が浅いため、試料の最表面の分析にも有効です。

励起波長	325 nm	スペクトル数	2,500 (50×50)
対物レンズ	40x, NA=0.50	測定時間	34 min
回折格子	300 g/mm		

励起波長325nmを用いたSiC最表面における応力分布のラマンイメージング

1cm 角 SiC 上グラフェンのラマンイメージ

グラフェンの層数は G バンドと 2D バンドの各ピークの強度比か ら推定できます。1cm 角の SiC 上グラフェンのラマンイメージン グを、ライン照明(左)と AreaFlash(右)でそれぞれ測定を行い、 G バンドと 2D バンドの強度比で表示しました。ライン照明では、 わずかな強度比の差を捉えることができています。一方、 AreaFlash 測定では、短時間に領域内の特長を捉えることがで きています。

SiC ウエハーのキャリア濃度イメージング

InGaN 層のフォトルミネッセンス (PL) イメージング

Photon energy (eV)

本サンプルは、東北大学 金属材料研究所 松岡研究室様よりご提供いただきました。

多層グラフェンのラマンイメージング

※カラーバーのレンジは若干異なります。

本サンプルは徳島大学 永瀬雅夫先生、大野恭秀先生よりご提供いただきました。

Applications | RAMANdrive 11