

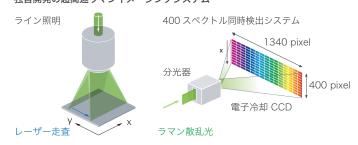
Nanophoton products | Laser Raman Microscope

レーザーラマン顕微鏡 **RAMAN** touch

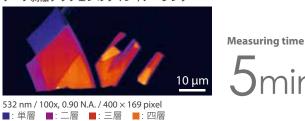
研ぎ澄まされた、 ハイパフォーマンス。

分光分析とレーザー走査顕微鏡のプロであるナノフォトンが開発した世界最速、最高画質のレーザーラマン顕微鏡 RAMANtouch。世界最先端の光学技術と独自開発の分光器、超高感度 CCD を搭載し、さらにソフトウェアも充実させ、あらゆるアプリケーションで最高のパフォーマンスを発揮します。

Microscopy イメージング性能	04
Advanced Functions 測定機能	06
Spectroscopy 分光性能	08
Applications דלישרא	10
Data Analysis データ解析	12
Options オプション	13
Services サービス	14
Testimonials お客さまの声	15

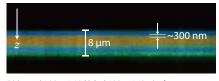

Microscopy

ナノフォトンの最先端テクノロジーは、 超高性能のラマンイメージングを、 さらに高画質に、高速に進化させました。


■ ライン照明とレーザー走査による高速イメージング。

ラマンイメージの取得速度を飛躍的に上げるため、レーザー ビームをライン状に引き伸ばして試料に照射する独自のライン 照明技術を開発。試料上のライン状に照射された領域から、同 時に400本のラマンスペクトルを検出します。また、高精度の スキャニングミラーを搭載することで、レーザー走査によるイ メージングを実現。分析エリアを指定したら、ステージを全く 動かすことなく、わずか数分のうちに10万画素を超える高精細 なラマンイメージを取得できます。

独自開発の超高速ラマンイメージングシステム

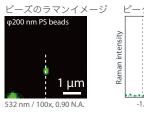


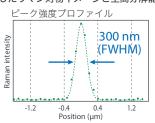
テープ剥離グラフェンのラマンイメージング

※サンプルご提供:物質・材料研究機構の津谷大樹様

多層膜フィルムの断層ラマンイメージング

Measuring time

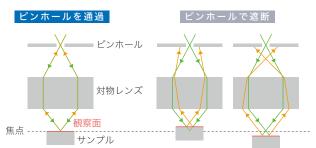

532 nm / 100x 140 N A / 400 × 140 pixel


■: ポリエチレン ■: ナイロン ■: ポリプロピレン

すべての倍率で、最高の空間分解能を。

ナノフォトンが目指したのはパーフェクト・レゾリューション。 100 倍の対物レンズ使用時に回折限界に迫る 350 nm の空間 分解能を発揮し、優れた共焦点光学系が 1 μm 以下の深さ分解 能を保証します。また、10倍や20倍などの低倍率対物レンズ の分解能も理論限界まで向上させました。RAMANtouch はい かなる測定でも、最高のイメージング性能を保証します。

100 倍対物レンズで取得したラマン対物イメージと空間分解能評価

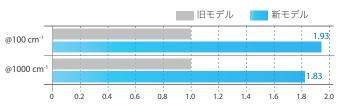


アッベの法則: $d = 0.51 \times \frac{\lambda}{N.A.} = 0.51 \times \frac{532 \text{ nm}}{0.90} = 300 \text{ nm}$

d:空間分解能 λ:波長 N.A.:開口数

共焦点 (コンフォーカル) 光学系とは?

観察面が焦点にあるケース


観察面が焦点からずれているケース

人射光 — 反射光 共焦点 (コンフォーカル) 光学系とは、検出器の前 にピンホールを置くことで、焦点以外から来た余 分な光をカットする技術です。

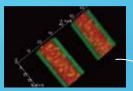
最高の感度を実現する、最新のオプティクスを搭載。

RAMANtouch は、最先端の光学材料やコーティング技術を取 り入れるため、光学系に含まれるすべての部品を常に見直して います。また、2016 年モデルからは分光器を新設計し、超高 感度な CCD 検出器を標準搭載することによって、それ以前の 旧モデルより、最大で 1.93 倍の超高感度な光学系が完成しま した。右図に示す通り、旧モデルとの比較では、532nm 励起 時に最大で 1.93 倍 (100cm⁻¹ での比較) に向上しています。 785nm 励起時も最大で 1.86 倍 (550cm⁻¹ での比較) の超高 感度なスペクトル測定が可能です。

励起波長 532 nm での検出感度を旧モデルと比較

※各波数において、旧モデルの感度を1として比較しています。

Advanced Functions

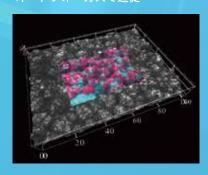

高度なレーザー走査テクノロジーが生み出す多彩な測定モード

Nikon

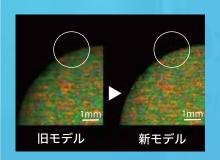
()1

3D測定モード

高速かつ高空間分解能で 試料の内部構造を三次元観察



ZTrack

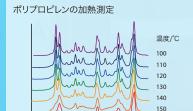

凹凸のあるサンプル表面に オートフォーカスで追従

光学顕微鏡像から試料表面の高さを 自動で識別。認識した表面形状に います。光学顕微鏡像やラマン画像 03

広視野測定モード

試料表面のカーブにも追従する 高速広視野イメージング

レーザー走査とステージ走査を組み 合わせることで試料全体を漏らさず


レーザー走査が実現する 「直感」「高速」「高精度」 RAMANtouch に搭載されているレーザー走査システムは、レー ザー顕微鏡のプロであるナノフォトンの技術力の象徴でもありま す。ステージを動かすことなく、対物レンズで見える視野内を自 在にスキャニングできるレーザー走査は、性能面においても操作 性においても、ステージ走査を凌駕します。

レーザー走査は、スポットが歪む?

レーザー走査によって、顕微鏡視野の端にビームを集光すると スポットが歪むのでは?そんな質問をよく耳にしますが、これは 30年前の話。最新の対物レンズは、視野の中央でも端でもスポッ ト形状は変わらず、光は試料に垂直に入射します。

AreaFlash

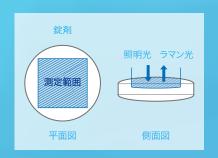
品質管理にも経時変化にも便利な 高速バルクスペクトル測定

ジと組み合わせた経時変化測定など

05

スキャンモード

レーザー走査が可能にする 自由自在なスキャニング



得し、残りの画素を補完するように を搭載。試料への熱の蓄積を防ぐラ

06

VolumeRaman

錠剤中の成分比率を定量評価する 錠剤専用のオプション機能

比率を評価します。錠剤の形状、成 ら行うため、感度が高い点が特長で

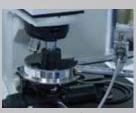
マウスでかんたん測定エリア選択

RAMANtouch で見ている視野のなかを、レーザービームが縦横 無尽に動きます。マウスクリックやドラッグで測定エリアを簡単 に指定できます。

レーザー走査

振動・ドリフト無しの きれいでクリアな画像

ステージ走査

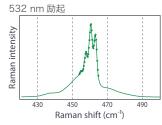

ステージドリフトや走査時の 振動による劣化した画像

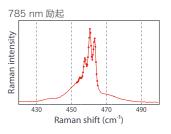
振動とズレの無いスキャニング

充放電セルなどをステージ走査で測定すると、付属ケーブルに器 具を引っ張られて正しく走査できません。レーザー走査なら、そ のような問題は生じません。

充放電セル

クライオスタット





近接したピークを分離する高スペクトル分解能

「十分なスペクトル分解能があること」「十分な明るさが確保で きること」「できるだけコンパクトであること」。この3つの条 件を満たすため、焦点距離550 mmの分光器を採用しています。 スペクトル分解能は、785 nm 励起、1200 g/mm の回折格子 使用時で 0.9 cm⁻¹ (FWHM) 以上です。右のグラフは四塩化 炭素を、532 nm のレーザーと 785 nm のレーザーとで測定し たラマンスペクトルです。いずれの励起波長でも、四塩化炭素 の複雑なピーク群をしっかり分離して検出できます。

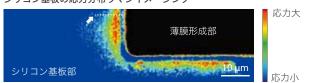
四塩化炭素のラマンスペクトル

励起波長 回折格子

532 nm 2400 g/mm

励起波長 回折格子

785 nm 1200 g/mm

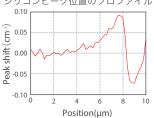


高精度応力測定を可能にするピーク位置決め精度

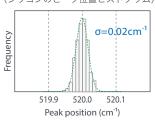
520 cm-1 に現れるシリコンのラマンピークは、応力によって 結晶格子がひずむことでそのピーク位置がシフトします。圧縮 応力に対しては高波数側に、引張応力に対しては低波数側にシ フトし、そのシフト量は応力に比例して増加します。右の画像 は、シリコン基板の応力分布をカラースケールで示したラマン ピークシフトイメージです。ラマンイメージ中の点線に沿って シリコンピーク位置を調べたグラフ(左下)を見ると、薄膜周 辺におけるわずかなピークシフトを検出できていることが分か ります。

RAMANtouch は、ラマンピーク位置の再現性と安定性に優れ ています。シリコンのピーク位置を繰り返し測定したグラフ(右 下)から、ピーク位置のばらつきがわずか 0.02 cm-1 以内に収 まっていることが分かります (典型値)。

シリコン基板の応力分布ラマンイメージング

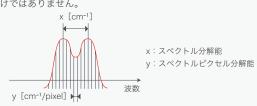


励起波長 対物レンズ 532 nm 100x, 0.90 N.A. スペクトル数 測定時間


60,000 (400×150) 20 min

回折格子 2400 g/mm

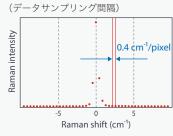
ラマンイメージ中の点線に沿った シリコンピーク位置のプロファイル



RAMANtouch のピーク位置決め精度 (シリコンのピーク位置ヒストグラム)

スペクトル分解能とスペクトルピクセル分解能の違い

スペクトルピクセル分解能とは、回折格子により分散したラマ ンスペクトル散乱光を CCD に当てたとき、1 ピクセルあたり 何 cm-1 に相当するかを示す量です。小さなピクセルを数多く 持つ CCD を使えば、スペクトルピクセル分解能の数値はいく らでも小さくなりますが、スペクトル分解能があがっているわ けではありません。



スペクトル分解能とスペクトルピクセル分解能

スペクトル分解能 (レイリー散乱光の半値全幅)


スペクトルピクセル分解能

励起波長 785 nm

回折格子 | 1200 g/mm

※値は典型値です

高いスペクトル分解能と広い測定波数範囲、サブミクロンの三次元空間分解能などの特長により、ラマン分光はさまざまな分野で活用されています。ここでは、主要な5つの分野の分析事例をご紹介。ほかにも、バイオ、食品、化粧品、鉱物、法科学など、あらゆる分野に優れたソリューションを提供します。

Semiconductor

半導体材料の分析

- 残留応力や結晶多形を評価し、その分布を数百 nm の分解能で観察できます。
- SiC・GaN・ダイヤなどの透明な材料なら、応力などの3D観察が可能です。
- ラマンピークの形状や半値全幅から、結晶性やキャリア濃度を評価できます。

Polymer

ポリマー材料の分析

- 透明な試料であれば、非破壊で深さイメージング分析ができます。
- 微小な異物や埋没異物を、前処理することなく分析できます。
- 結晶性や配向のイメージング分析が可能です。

Pharmaceutical

医薬品の分析

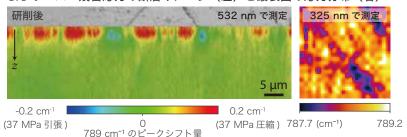
- 結晶多形や擬多形を識別することができます。
- 製剤中の API の結晶多形やその含有量、粒径などの定量評価ができます。
- 非破壊・非接触で短時間で分析できるため、PATへの応用も可能です。

Nano-Carbon

ナノカーボン系材料の分析

- CNT の直径やグラフェンのエッジ構造など、様々な物性情報が得られます。
- ○GバンドとDバンドの強度比から、カーボン材料中の欠陥量を評価できます。
- \bigcirc 低波数領域にあらわれるピークから層状物質の層数が判定できます。

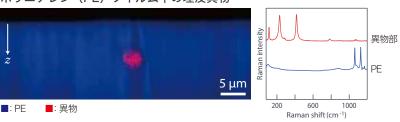
Battery


リチウムイオン電池材料の分析

- さまざまな正極・負極材料の充電状態 (SOC) が分かります。
- 材料の分散状態や局所的な充電状態を評価できます。
- 劣化時に生じる結晶構造変化とその分布をイメージングできます。

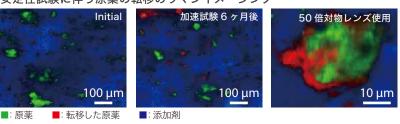
SiC ウエハー応力の断層ラマンイメージング

右の図は SiC ウエハー研削面の断層応力イ メージングの結果です。顕微鏡画像で黒ずん で見える欠陥部には引張応力が生じ、その周 囲では圧縮応力が生じていることが分かりま す。侵入長が浅い紫外レーザーを使い、試料 の最表面の応力分析や PL 分析も可能です。


SiC ウエハー残留応力の断層イメージ(左)と最表面の応力分布(右)

埋没異物の非破壊イメージング分析

透明なフィルム中の埋没異物を断層ラマンイ メージングして、異物の埋没位置とサイズを 可視化したデータです。異物部のスペクトル と PE のスペクトルの差分を求め、ライブラ リサーチを行った結果、異物は方珪石である ことが分かりました。


ポリエチレン(PE)フィルム中の埋没異物

製剤中の結晶多形のイメージング分析

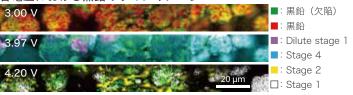
Initial の錠剤と 6 ヶ月の加速試験後の錠剤そ れぞれの表面を、10 倍対物レンズで分析し たデータです。加速試験の後では原薬の一部 が転移していることが分かります。50倍の 対物レンズで観察すると、原薬粒子の周囲か ら転移が進んでいる様子が見て取れます。

安定性試験に伴う原薬の転移のラマンイメージング

カーボンナノチューブの高分解能イメージング

電極間に合成されたカーボンナノチューブ (CNT) を、回折限界に迫る 350 nm の空間 分解能でラマンイメージングしたデータで す。RBM のピーク位置から半導体 SWNT (Single-walled carbon nanotube) と金属 SWNT に分類することが可能です。

カーボンナノチューブの RBM 分布のラマンイメージ



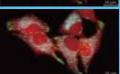
※サンプルご提供:東京大学丸山茂夫教授

黒鉛負極の in-situ ラマンイメージング

右の図は、黒鉛負極の in-situ ラマンイメー ジングの結果です。充電反応により黒鉛のス テージが変化していきますが、欠陥部では反 応が進んでいないことが分かります。ラマン イメージング分析によって各種活物質の充電 状態の空間分布を知ることができます。

各電圧における黒鉛のラマンイメージ

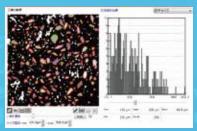
532 nm / 50x, 0.70 N.A. / 400 × 20 pixel / 50 min


= modifier_ob.modifiers.new(* Data Analysis

信頼性と先進性を兼ね備えた高度なデータ解析システム

前処理

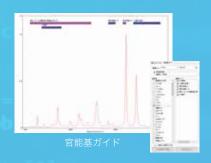
わずかなピークをも解析可能にする 多彩なスペクトル前処理機能



に影響が少ないスムージング法、

()

画像化/解析


便利なラマン画像自動生成機能から 高度なスペクトル解析まで

る微小応力評価や相関画像解析など の高度な処理機能までを標準搭載。 03

ガイド / レポート

物質同定サポート機能と レポート作成機能

メンテナンスフリーの光学系に 自動調整機能で安心をプラス

レーザー顕微鏡のプロフェッショナルであるナノフォトンのエン ジニアは、どのような要素が光軸を狂わせるかを熟知しています。 それらの要因を排除した光学系をデザインすることで、性能がほ とんど低下しない優れた安定性を実現しました。ユーザー自身に よる日々の光軸調整は一切不要です。

それでも、万が一のときの光軸調整はどうしたらよい?

「エアコンの直風が当たる場所に装置を置かざるを得ない……」 「装置のそばに大きな振動源がある……」。そんな万が一のと きのために、自動メンテナンス機能も搭載されています。

RAMANtouch オプション機能

機能	品名	内容	備考
電動ステージ	XY heta電動ステージ	独自のステージ設計により、サンプルを任意の 位置に移動させても、視野中心を中心としてサ ンプルを回転可能です。	可動範囲:-90° ≤ θ ≤ 90° 25 mm(X) x 25 mm(Y)
	電動切り替えクロス パラレル偏光測定機構	XYθ軸電動ステージと組み合わせることで、 XX、XY、YY、YX 偏光測定が可能です。	
偏光測定	簡易偏光子セット	偏光素子を挿入できる顕微鏡レボルバーと偏光 子セットを組み合わせて使います。XXまたは YYのパラレル測定のみに対応します。	レーザーごとに必要です。
低波数測定	低波数測定用フィルター	ラマンスペクトル範囲 10 cm ⁻¹ からの測定を可能にします。	レーザーごとに必要です。
高精度ピークシフト測定	参照サンプルの電動切替機構	レーザーラマン顕微鏡の光路に水晶板やサファイア板を挿入し、サンプルと同時にリファレンスピークを測定することができます。リファレンスピークを基準にしてサンプルのピーク位置を解析できるので、環境温度変化を気にせずいつでも高精度な応力測定が可能です。0.1 cm ⁻¹ 以下の高精度ピーク位置決めを実現します。	
ラマンプローブ	ラマンプローブ	本体から離れた位置にあるサンプルや、ステージに搭載できないサンプルを測定できます。また、他の機器にファイバープローブを接続し、スペクトルをモニタすることができます。	※本オプションを含む場合、クラス3 B レーザー製品となります。(JIS C6802:2014)
	VolumeRaman測定機能	錠剤中の成分比率を定量する錠剤専用機能。 詳しくは7ページをご覧ください。	
マクロ測定	石英セルを定位置に設置し、液体のスペクトル を簡単に測定できる機能です。石英セルの位置 は正確・固定された位置に設置されるため、測 定データの再現性が高くなります。		
自動粒子測定	自動粒子測定機能	光顕像から粒子を自動で認識し、オートフォーカスしながらラマン分光分析を行います。測定中にリアルタイムでスペクトル検索を行い、自動で成分を同定、統計処理まで行います。	
	ワンステップライブラリ構築機能	測定したスペクトルを用いた、ユーザーによる ライブラリ構築機能です。登録したライブラ リーを参照した自動検索も可能です。	
データベース	STジャパン社製データベース Panorama Bio-Rad 社製ラマンデータベース KnowltAll	ラマン分光用データベース	ライブラリの種類・数、機能などにつ いては、別資料を参照してください。
加熱冷却ステージとの連携機能	温調ステージからのトリガーで測定を開始します。また、その温度を測定データに自動で記録します。		
21CFR Part11 やGxP等の規制へ の対応をサポートする機能群	電子署名、システムへのアクセス制限、監査証跡 (Audit Trail) 機能など		
その他	コンフォーカルピンホール、アンチストークス測定、各種対物レンズ、ウェルプレート自動測定機能、LIBcell など 各種取り揃えております。お問い合わせください。		

サービス

最高品質をお約束する保守契約とサービスプラン

年間保守契約

年1回の定期メンテナンスを実施するこ とで、レーザーラマン顕微鏡の状態を、 常に最高レベルに保つことができます。

レーザー保守契約(オプション)

突発的に生じるレーザーの修理費用を、 定額に抑えることができます。年間保守 契約に付加できる追加オプションです。

ユーザートレーニング

装置のオペレーション・トレーニングを 追加で実施できます。ご要望に応じて、 メニューをカスタマイズいたします。

ラマン分光イメージング セミナー

参加申し込み ナノフォトン公式ホームページより。

https://www.nanophoton.jp/seminar/

経験豊富なナノフォトンのアプリケーションエンジニアによる、 様々なラマン分光イメージングセミナーを実施しております。ラ マン分光に関する基本技術はもちろん、ラマンイメージング分析 を実際の業務に活かしていただけるような、実用的な内容まで幅 広くご準備しております。座学と分析の実演を組み合わせたセミ ナーや、オンラインでのセミナーを多数企画してまいります。

お客さまの声

すべては、お客さまにご満足いただくために

株式会社住化分析センター 藤原 豊 様

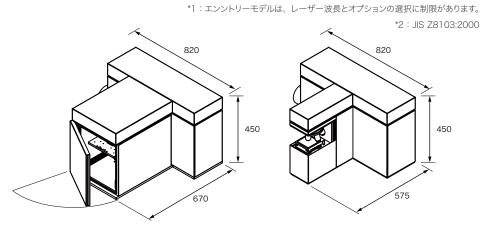
「装置の安定性も他社製品と比較した場合の高評価ポイントでした。ナノフォトンのラマン顕 微鏡では、毎回安定して精度の高いデータが取得できました。 弊社では、10回測って1回チャ ンピオンデータを出すことではなく、毎回、正確なデータを出すことが求められるため、こ の安定性は非常に重要な選定要素でした」

独立行政法人 物質・材料研究機構(NIMS)(現 国立研究開発法人) 竹村 太郎 様

「操作がとても簡単というのは、使っておられるみなさんが実感されているところだと思いま す。またソフトウェアに関する要望を上げたときは、プラグイン開発をすぐに進めてくれま した。迅速かつ柔軟なアフターサービスがあることは、共通機器の管理者としてはとてもあ りがたいですね」

Nanyang Technological University (シンガポール) Xing Yi Ling, Ph.D.

「私たちのグループでは、表面増強ラマン分光法(SERS)の応用のための自己組織化ナノ構造 を研究しています。高分解能での高速ラマンイメージングは、この研究を進める上で非常に重 要な要素です。従来は、まともなラマンイメージを取得するのに数時間を費やしていましたが、 ナノフォトンのラマン顕微鏡なら、わずか数分でイメージングできるようになりました」


主な性能

	主な性能		
空間分解能 (X / Y / Z)	500 nm / 350 nm / 1000 nm (@ レーザー波長 532 nm、対物レンズ 100 倍 , 0.90 N.A.)		
スペクトル測定範囲	100 cm ⁻¹ ~ (オプション:10 cm ⁻¹ ~)		
スペクトル分解能 (FWHM)	0.9 cm ⁻¹ (@785 nm、1200 g/mm)		
スペクトルピクセル分解能	0.4 cm ⁻¹ /pixel (@785 nm、1200 g/mm)		
ピーク位置決め精度	0.1 cm ⁻¹ (@532 nm、2400 g/mm)		

主な構成

土は侢以			
	主な構成		
	266 nm、325 nm、355 nm (ポイント照明のみ)		
レーザー波長	405 nm、457 nm、488 nm、532 nm、633 nm、671 nm、785 nm ほか		
レーザー照射方式	ポイント照明 / ライン照明		
走査方式	レーザー走査 / ステージ走査		
分光器の焦点距離	550 mm		
回折格子	150、300、600、1200、1800、2400、3600 g/mm から最大3枚を選択		
検出器	超高感度電子冷却 CCD 1340 × 400 画素 (ピーク量子効率 98%)		
	標準モデル		
	高精度電動ステージ	電動ステージ	
	同情及毛動ハケッ	色却パケーク	
ステージ	XY 軸移動距離 30 mm × 30 mm / 分解能 *2 100 nm		
ステージ			
ステージ	XY 軸移動距離 30 mm × 30 mm / 分解能 *2 100 nm	XY 軸移動距離 20 mm × 20 mm / 分解能 12 1 μ m	
ステージ 遮光カバー	XY 軸移動距離 30 mm × 30 mm / 分解能 2 100 nm Z 軸移動距離 35 mm / 分解能 2 50 nm	XY 軸移動距離 20 mm × 20 mm / 分解能 2 1 μ m Z 軸移動距離 25 mm / 分解能 2 50 nm	
	XY 軸移動距離 30 mm × 30 mm / 分解能 ² 100 nm Z 軸移動距離 35 mm / 分解能 ² 50 nm 座面サイズ 200 mm (X) × 180 mm (Y)	XY 軸移動距離 20 mm × 20 mm / 分解能 2 1 μ m Z 軸移動距離 25 mm / 分解能 2 50 nm 座面サイズ 90 mm (X) x 90 mm (Y)	
遮光カバー	XY 軸移動距離 30 mm × 30 mm / 分解能 ² 100 nm Z 軸移動距離 35 mm / 分解能 ² 50 nm 座面サイズ 200 mm (X) × 180 mm (Y) インターロック付き片開きドア 820 × 670 × 450 mm	XY 軸移動距離 20 mm × 20 mm / 分解能 ² 1 μm Z 軸移動距離 25 mm / 分解能 ² 50 nm 座面サイズ 90 mm (X) x 90 mm (Y) インターロック付き上下スライド式カバー	

本製品はオプションのラマンプローブを含む場合クラス 3B レーザー製品、含まない場合クラス 1 レーザー製品です。 (JIS C6802:2014)

クラス1レーザー機器

ナノフォトン株式会社

東京ショールーム

〒105-0003 東京都港区西新橋 3-6-10 マストライフ西新橋 403 TEL: 03-6432-4881

大阪ショールーム / R&D センター

〒562-0036 大阪府箕面市船場西 3-1-7 ICC ビル 1F

TEL: 072-736-9181 E-mail: info@nanophoton.jp